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The effect of vacuum polarization in the field of an infinitesimally thin solenoid at distances much larger
than the radius of solenoid is investigated. The induced charge density and induced current are calculated.
Though the induced charge density turned out to be zero, the induced current is a finite periodical function of
the magnetic flux �. The expression for this function is found exactly in a value of the flux. The induced
current is equal to zero at the integer values of � /�0 as well as at half-integer values of this ratio, where
�0=2��c /e is the elementary magnetic flux. The latter is a consequence of the Furry theorem and periodicity
of the induced current with respect to magnetic flux. As an example we consider the graphene in the field of
solenoid perpendicular to the plane of a sample.
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The Aharonov-Bohm effect,1 scattering of a charged par-
ticle off an infinitesimally thin solenoid, which is absent in
classical electrodynamics, has been investigated in numerous
papers, see review.2 Both nonrelativistic1 and relativistic3–6

equations have been considered. Similar effects having topo-
logical origin have been studied in quantum field theory in
Refs 7 and 8. Intensive investigation of the topological ef-
fects in condensed-matter systems has been performed re-
cently both experimentally and theoretically in Refs. 9–12.
New possibilities to study topological effects in quantum
electrodynamics �QED� have appeared after recent success-
ful fabrication of a monolayer graphite �graphene�, see Ref.
13 and recent review.14 The single-electron dynamics in
graphene is described by a massless two-component Dirac
equation15–18 so that graphene represents a peculiar two-
dimensional �2D� version of massless QED. This version is
essentially simpler than conventional QED because effects of
retardation are absent in graphene. However, the “fine struc-
ture constant” �=e2 /�vF�1, since the Fermi velocity vF
�106 m /s�c /300 �where c is the velocity of light�, and
therefore we have a strong-coupling version of QED. Below
we set �=c=1.

Existence of induced charge density in the electric field of
heavy nucleus due to vacuum polarization is one of the most
important effects of QED. This problem was investigated in
detail in many papers, see, e.g., Refs. 19–22. Charged impu-
rity screening in graphene can also be treated in terms of
vacuum polarization.23–33 In Ref. 32, the induced charge den-
sity in graphene has been investigated analytically using con-
venient integral representation for the Green’s function of the
two-dimensional Dirac equation of electron in a Coulomb
field. Calculation of the induced charge has been performed
exactly in the charge of impurity. In Ref. 32, the Green’s
function has been obtained following the method based on
the operator technique suggested in Ref. 34. In the present
Brief Report, we use similar integral representation for the
Green’s function to derive the induced current in the field of
infinitesimally thin solenoid. Calculation is performed for ar-
bitrary value of the magnetic flux �.

The induced density and induced current in the vector
potential

A�r� =
��� � r�

2�r2 ,

where � is the unit vector directed along z axis, have the
form

�ind�r� = − ieN�
C

d�

2�
Tr�G�r,r	��
 ,

Jind�r� = − ieNvF�
C

d�

2�
Tr��G�r,r	��
 �1�

where N=4 reflects the spin and valley degeneracies, and the
Green’s function G�r ,r� 	�� satisfies the equation

�� − vF� · �p − eA�r��
G�r,r�	�� = ��r − r��I . �2�

Here �= �	1 ,	2�, and 	i are the Pauli matrices; p= �px , py� is
the momentum operator, r= �x ,y�, and I=diag�1,1
. The ma-
trixes � do not act on the spin variables but on the pseu-
dospin ones and the spin degrees of freedom are taken into
account in a factor N. According to the Feynman rules, the
contour of integration over � goes below the real axis in the
left half plane and above the real axis in the right half plane
of the complex � plane. It is convenient to write the function
G�r ,r� 	�� as

G�r,r�	�� = �� + vF� · �p − eA��D�r,r�	�� , �3�

where D�r ,r� 	�� is the Green’s function of the squared Dirac
equation,

��2 − vF
2�p − eA�r��2 + vF

2���r�	3
D�r,r�	�� = ��r − r��I .

�4�

For r�0 and r��0, we can omit the term with � function so
that

��2 − vF
2�p − eA�r��2
D�r,r�	�� = ��r − r��I . �5�

The Eq. �5� has regular and singular solutions at r=0 and
r�=0. The Green’s function of the Dirac equation with the
magnetic-solenoid field was considered in Ref. 35 taking into

PHYSICAL REVIEW B 80, 033413 �2009�

1098-0121/2009/80�3�/033413�3� ©2009 The American Physical Society033413-1

http://dx.doi.org/10.1103/PhysRevB.80.033413


account both regular and singular parts. The singular solu-
tions originate from the singular behavior at r=0 of the vec-
tor potential A�r�. Therefore, to find the correct superposition
of regular and singular solutions it is necessary to perform
the appropriate regularization. If we take in mind a real so-
lenoid, then the natural regularization is the finite radius R of
this solenoid, see Ref. 8. Then it is possible to show that, to
calculate the induced charge density and the induced current
at r
R, we can use the regular Green’s function of the Eq.
�5� while the singular part of the Green’s function as well as
the term with � function in Eq. �4� determine these quantities
at r�R. The induced current and the induced charge density
at r�R depend on the magnetic field distribution inside the
solenoid and, therefore, are model dependent. At r
R, the
contribution of the singular part of the Green’s function to
the integrand in Eq. �1� contains a factor ��R�� with some
positive �. The main contribution to the integral over � at
r
R is given by the region ��1 /r so that the contribution
of the singular part of the Green’s function to the induced
current is suppressed by the factor �R /r��. This situation is
completely similar to the problem of a finite nuclear size at
the calculation of the vacuum polarization effects in heavy
atoms, see, e.g., Ref. 36. In quantum field theory it is pos-
sible to consider regularizations different from the solenoid
radius R. As a result some uncertainty appears in the predic-
tion of physical quantities.4,7,8 In the present Brief Report we
consider the induced charge and induced density at r�0
which are model independent. Substituting the function
D�r ,r� 	�� to Eq. �5� in the form

D�r,r�	�� =
1

2�
�

m=−



eim��−���Am�r,r�	��I , �6�

and right-hand side of the Eq. �5� as

��r − r��I =
��r − r��
2��rr�

�
m=−



eim��−���I

we obtain that the function Am�r ,r� 	�� satisfies the equations

 �2

vF
2 +

1

r

�

�r
r

�

�r
−

�m − ��2

r2 �Am�r,r�	�� =
��r − r��

vF
2�rr�

, �7�

where �=e� / �2��. One can see that the function Am�r ,r� 	��
can be obtained from the Green’s function for the free radial
Schrödinger equation in the 2D case by the substitution m
→m−�. A convenient integral representation for the func-
tion Am�r ,r� 	�� can be obtained using the operator method
developed in Ref. 34 at the calculation of the Green’s func-
tion for the Dirac equation of an electron in a Coulomb field
in three-dimensional space. This method was recently used
in Ref. 32 for the case of 2D space. It follows from the
results of Ref. 32 at zero Coulomb field that

Am�r,r�	�� = − �
0

� ds

vF
2 sinh s

�exp�iE�r + r��coth s − i���J2�2E�rr�

sinh s
� ,

�8�

where E=� /vF, �= 	m−�	, and J2��x� is the Bessel function,
�=+1 if Re E�0 and �=−1 if Re E�0. The sign � takes
into account the analytical properties of the Green’s function.

Taking into account the analytical properties of the
Green’s function, the contour of integration with respect to �
can be deformed to coincide with the imaginary axis. After
these transformations, we obtain that �ind�r�=0 as a result of
integration over �. This fact can be easily explained because,
due to the Furry theorem, �ind�r� should be the odd function
of �=e� / �2��. However, in this case we would obtain that
�ind�r� is pseudoscalar that contradicts to the parity conser-
vation of the massless 2D Dirac equation. For Jind�r� we
have

Jind�r� = −
eNvF

�2r2 �� � r��
m=0



�m − ���
0



dE�
0

 ds

sinh s

�exp�− 2Er coth s�I2� 2Er

sinh s
� , �9�

where I2��x� is the modified Bessel function of the first kind.
We note that Jind�r�, Eq. �9�, is an odd function of �, in
accordance with the Furry theorem. To have a possibility to
change the order of summation and integration, we introduce
some quantity ��1 as a lower limit of integration over s.
After that we take the integral over E and obtain

Jind�r� = −
eNvF

2�2r3 �� � r� �
m=−



�m − ��

��
�

 ds

sinh s
exp�− 2�s� . �10�

As should be, Jind�r� depends only on the fractional part �̃ of
�, 	�̃	�1. The quantity �̃ is �̃=�−n for ��0 and �̃=�+n
for ��0, where n is a maximal integer number less than 	�	.
Then we perform summation over m and set �=0. We have

Jind�r� =
eNvF

2�2r3 �� � r��
0

 ds

sinh s
��̃ exp�− 2	�̃	s�

+ �̃ exp�− s�
cosh�2�̃s�

sinh s
−

sinh�2�̃s�
2 sinh2 s

� . �11�

Taking the integral over s we finally arrive at

Jind�r� =
eNvF

16�
F��̃�curl�

r
� ,

F��̃� = �1 − 2	�̃	�2tan���̃� . �12�

It is interesting that Jind�r� equals to zero at 	�̃	=1 /2, Fig. 1.
This may be explained as follows. Due to invariance of
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Jind�r� under the substitution �→�−1 we have F�	�̃	�
=F�	�̃	−1�, and due to the Furry theorem it should be F��̃�
=−F�−�̃�. From these two relations we obtain that
F��1 /2�=0.

The induced charge density and current in the presence of
an infinitesimally thin solenoid were also considered in Refs.
37 and 38. The results of these papers contain the contribu-
tion of both singular and regular parts of the Green’s func-
tion since a regularization for the field was not applied.
Therefore, the expressions for the induced charge density
and current contain uncertainty which does not allow one to

make any explicit predictions for these quantities. Note that
our results are in agreement with the contribution of the
regular part of the Green’s function in Ref. 38 �first term in
Eq. �6.14��.

To summarize, we have investigated the effect of vacuum
polarization in the field of an infinitesimally thin solenoid at
distances much larger than the radius of solenoid. It turns out
that the induced charge density is zero. We have derived
exactly in a magnetic flux the expression for the induced
current. This current is a periodic function of the magnetic
flux and is equal to zero not only at the integer values of
� /�0 but also at half-integer values of this ratio. Though the
system considered in our Brief Report consists of graphene
and a solenoid perpendicular to the plane of a sample, the
results can be easily generalized for another systems such as
studied in Ref. 9.
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FIG. 1. Dependence of the function F��̃�, Eq. �12�, on the frac-
tional part �̃ of �=e� / �2��, where � is the magnetic flux.
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